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PRECEDING PACE ELAN;{ r,'OTFILP,:..ED

SUMMARY

The development is described of an improved jet-in-crossflow model for

estimating wind tunnel blockage and angle-of-attack interference. Experi-

ments showed that the simpler existing models fall seriously short of

representing far-field flows properly, A new, vortex'sou rce-doublet (VSD)

model was therefore developed which employs curved trajectories and experi-

mentally-based singularity strengths. The new model is consistent with

existing and new experimental data and it predicts tunnel wall (i.e. far-

field) pressures properly. It is implemented as a preprocessor to the wall-

pressure-signature-based tunnel interference predictor described in Part

I of the present report.

The supporting experiments and theoretical studies revealed some

new results, Comparative flow field measurements with l-;nch "Free-alr"

and 3-inch impinging jets showed that vortex penetration into the flow, in

diameters, was almost unaltered until 'hard' impingement occurred. In

modeling impinging cases, a 'plume redirection' term was introduced whiKh is

apparently absent in previous models. The effects of this term were found

to be very significant.

A copy of this document is retained in the Lockheed-Georgia Company

Engineering Report Files. The identifying number is LGBIER0167.
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1.0 INTRODUCTION

1.I Aims of the present work

The aim of the work described in this re_rt is to adapt o,- develop

a ]et-in-crossflow model for estimating wind t_mneI interference with

primary emphasis upon non-lmpinging cases. A corresponding computer

program is required which can be used on an optional basis with the Part I

program for tests involving mode1_ with llftinQ iets o _ fans.

1,2 Backqround

Part I of this report describes a method for calculatlnq wind tunnel

blockage and anqle-of-attack corrections from pressure measurements made

along the tunnel surfaces. Theoretical flow models employed are constructed

from line singularities which represent the model and it's wake a_ 'perceived'

bv the tunnel, the flow models can accommodate wing swee_, anqle-of-attack

and offset from the tunnel center, though in ma_y cases it has been found

that an unswept planar model suffices. The approach may be considered semi-

inverse since the details mentioned are user-specified yet the sinqularltv

strengths and their axial locations are determined from wall pressures usinq
influence matrices.

It would be very useful if the above approach could be extended alo,_q

the same lines to lifting jets and all_v trajectory shape, for example, to

be implied from the wall pressures. Hc_vever, on reviewlnq the loqistics

needed for doing this - particularlv the likely _ize and conditioninq of

the influence matrices concerned - it soon became apparent that a more

exp]icii approach was preferable. Subsequent experience, described later,

has sho_n that use of an explicit model for the jet plume is probably
essential.

It appeared initially that, with the exception of _all pressure

measurements, most of the needed experimental data and flow modeling exper-

ience would be available in existing literature. H(_ever an extensive

review of experimental data revealed that most experiments concerned jets
emergent from a plane or from models which are relatively complex. Jet-

from-plpe data, which was considered more suitable, was relativelv scarce.

New experiments were therefore planned,uslng ]ets-from-pipespto determine

wall pressures and to find parametric relationships between the new iet-

from_ipe and the existing jet-from-plane flow field data.

A review was made of the very many theoretical models which have been

proposed for the jet-in-crossflow, Most had to be reiected because they

are too complex for the present application, However the models proposed

by Fearn (Ref. 1), by Hevson (Ref, 2) and by I¢iltlams and Wood (Ref. 3)

included at least some of the necessary physics and were reasonably simple.

These were therefore prime candidates in the earlier stage of the work and

it was hoped that one or _re could be used directly.



Theprincipal fl_ modelproperty required for the prese_t work
the ability to predict far-field flo_s. A goodtest of this is to a_t_-mpt
to predict tunnel wall pressures. It will be seenlater that all of the
candidate methods failed this test quite badlY. In retro',_ect, it is

apparent that all were suitable only for near- field applications.

As originally perceived, the main tasks were to interpret and

organize existing experimental data and modeling techniques for tunnel int,,r-

ference prediction. It has turned out thal slqnificant n_w studie_ were

needed in both areas In order to build upon existinq technology. The_e

studies are the subject of the rest of _his report.

1.3 Layout of the Present Report

Section 2 will describe, in broad terms, the way in which jet-in-

crossfl_ and "rest of model" interference effects are de_ermint.d and

combined. Sections 3 and 4 concern test details and results for iet-from-

pipe test_ conducted as part of the present study. Jet hardware and

calibration procedures are described in more-than-usual detail because the

extra attention given to these aspects paid off well. The development of

a new fl_ model, designated the 'VSD' model for Vortex/Source/Doublet, i_

described in Section 5 and comparisons are made with predictions usinq

other methods. Section 6 gives the fairly comprehensive conclusion_

which arose from the present work.

l_i the interest of _hortening the n_ain part of this report, the

majority of the experimental traverse data Is presented as Appendice_ A and

B. For similar reasons, comments concerning Hevson's method for ;nterfer-

once estimation appear in Appendix £. Program documentation and listinq_

are given in Appendix D.



2.0 INTERFACE TO THE PART I PROGRAM

For the reasons mentioned above, the jet-in-crossflow mod_,linQ program

developed here is used as a pre-processor to the main, Part I program.

Figure 2.1 depicts the general principles of operation of the Part I program.

Prior to a test, a theoretical flow model is constructed using mod_l snan,

sweep and angle-of-attack details, as needed. An influence matrix derived

from this model is used in conjunction with wall, roof and floor pressure

data to determine source and vortex strength distributions as a function of X.

Tunnel-induced angle-of-attack and blockaQe increments are then calculated.

For jet- or fan-lift models the general approach is the same but the

above routine is preceded by expliclt jet-in-crossflow calculations (see

Figure 2.2). These accomplish two objectives. Firstly, a direct estimate

is made of the distributions of _u and _a, for subsequent addition to

corresponding 'rest-of-model' data. Secondly, the effect of the jet-ln-

crossflow (or jets) is removed from the measured wall pressure signatures

prior to further processing. This step is very important because it removes

substantial non-planar effects from the data which would otherwise cause

errors due to 'cros_ _ effects. In partlcuIar, offset blockage effect_ of

a strongly penetrating jet would be returned eventually as tunnel-induced

angle-of-attack in the absence of the preprocessina step.



3.0 TEST RIGS At_D PROCEDURES

3.1 Introduction

Figures 3.1 and 3.2 give a general view and dimensions of the test rig

for the jet-in-crossflow experiments. The main test measurements comprised

in-plume three-component velocity traverses, using the rake of S-holed pitch

yaw probes shown, and wall pressures along the test section walls and roof

(see subsection 3.4). Boundary layer tangential blowing was available at the

roof, from a location 13-inches ahead of the jet exit, and was applied when

surface pressures on the roof center!ine indicated the presence of flow break-

down. Sufficient blowlng was applied to remove the standing vortex, ahead of

the jet impingement point, when it occurred. This parallels the approach

discussed in detail in Part I of the present report for jet-flapped wings.

In practice, the _angential blowing was needed only with the 3-inch jets at

hi9 h jet velocity ratios.

Figure 3.3 tabulates the jet configurations used and typical mainstream

and jet velocitles for the nominal test velocity ratios. With the 3-inch

jets at velocity-ratlo 8, a reduced mainstream speed was necessary because

of supply limitations.

3.? On-line Tunnel Blockage Corrections

The conventionql solid-plus-wake blockage equation has the form

Uc " Uo (I + _s + _w) (3.1)

where U c is the corrected velocity at the model location

Uo is the calibrated empty tunnel velocity at the model

_s, _w are solid and wake blockage factors.

The above form was used because the full wall pressure signature approach

cannot be implemented without the flow model which will be developed from

the present experiments. A predecessor of the pressure signature method,

formerly designa_ed the 'q-pot' approach, was used to determine ew" A con-

ventlonal calculation was used for es, the solid blockage, based upon jet

pipe dimensions. The velocity increase _U, due to wake blockage, is inferred

via linear assumptions from the pressure decrease ACpt, between the con-

traction exit piezometer ring and the (atmospheric) breather slots at the

start of the first diffuser. Thus

. (_IJ) I (,%U) ICw . _ w " I_('_Cpt) (3.2)
UO x"o U° x'_

On supplying the necessary calibration constants and removing the empty-

section value of _Cp., a working equation for blockage-corrected velocity is
obtained at the mode_ location as



!

!

= " • + 0.25 (_Cpt - .04903)} _pqc _-pU c - 1 0182 {I 4. _s

= 1.0182 (qc I qo ) 3p (3.3)

where Ap is the measured contraction pressure drop

and ACpt = _Pt / 1.0182 Ap.

The corresponding corrected static pressure at the model is

I
PC = H0 _'_ UC"

where Ho is obtained from the tunnel calibration, based upon contraction

entry piezometer pressures. Figure 3.4 shows typical values of blockage

ratio as a function of nominal jet velocity ratio RNO M.

To complete the free stream data, tunnel density is obtained using Pc,
the measured tunnel temperature and the equation of state. Tunnel pressure

ratio (to Pc), true speed and and blockage ratio (i.e. Uc / Uo) are also
calculated.

(3.4)

3.3 Jet Hardware and Its Calibration

Figure 3.5 shows a longitudinal section through the jet plenum and

flow conditioning system with a 3-inch transition piece to a I-inch inclined

jet fitted. For verticaljets, the transition piece is omitted. In the

latter cases plenum-to-jet pipe contraction ratios are 12.8 and 115 for the

I-inch and 1-inch pipes respectively. Pre-straightening, from the supply
cones at the base of the plenum (Figure 3.6) is accomplished by a 2-inch

thick honeycomb of ¼-inch cell size. When installing the inclined, l-inch
pipes the plenum position was adjusted to keep the jet exit location constant.

Calibration runs, using a total pressure rake at the jet exits, showed

a need to correct the ]-inch jet profile to match the more fully developed
l-inch jet profile. Figure 3.7 shows an adjustable, profile-modification

device used to increase the velocity deficit around the 3-inch plpe. A

good match was obtained, after two adjustments, for the configuration shown.
The profiles themselves will be discussed in Section 4.

Jet caZibration

Pressure ratio, to corrected tunnel static, Pc, was the primary jet
control variable. Mass flow was ai_o measured but this included roof

boundary layer control air, during forward speed runs with the larger jets
at high velocity ratio. The main calibrations were therefore made on the
basis of jet plenum-to-exit pressure ratio.

A rake of total pressure probes at 0.1-inch spacing was employed to

determine the thrust of the partially developed pipe flow profiIes at jet

exit. Data were obtained across two diameters at right angles and integra-

t;ons were performed to determine mass flow, for comparison with direct

measurements, and thrust. Checks on the thrust gave good agreement, for



partially developed pipe flow skin friction, wlth data quoted by Ower and

Pankhurst

The following calculation procedure was employed during data
reduct ions :

• 2 PP _ - 1
Mjet" = _ - 1

Tjet Tp /(1 + _i 1. _ Mje t " )

Pc

PJ = R T.
jet

(3.5_

(3.6/

(3.7)

Vth " M. , _R T.jet jet

The mean jet velocity Vj was obtained durinn calihration from the
measured mass flow in via:

-
Vj -

,,j Aj

A shape parameter, \jwas defined as

Vj

Vth

is obtained during jet calibration and is used routinely to obtain the

flow coefficient CQ using

(3.9)

(3.10]

s ,_ s
ii •

CQ _j "c UcS AJ

,,j Vj Aj S

" _c Uc S " Aj

,'j Vth

"C Uc
(3.11)

where \ is a function of jet pressure ratio (see Figure 3.8_



As net jet thrust could not be measured directly, I1 and 12, defined via

equations 3.12 and 3.13 below, were evaluated from calibration rake data:

Rm 1

" [ VJm r r -

r dr - ql 2_pj Rm2Vj d = nl 2 I (3 12)
m-n 1 2,pj Vjm Vj Rm _m _PJVJ 1 "

o o

,I rT-n 2 2_pj V_m r dr=n 2 2_pj Rm=Vj _ Oj/ "_m d _mm = n22_PJ jI2 "

o o

n 1 and n 2 are calibration factors which allow for the differences, due to
traverse coverage and other reasons, between rake integrations and true

values. Since _ is known, we may find nI via (3.12), from

nl "

2_pjVjI I

The final step contains the main assumption of the present calibration,

that n I and n) are equal; i.e. the calibration factors for mass flow and
moment6m flux-are the same. This assumption is supported by the fact that

good pipe skin friction estimates were obtained from the present cali-

bration data.

If nI = n2

we may combine (3.14) and (3.15) and substitute for n I in (3.13) to

obtain

(3.14)

(3.15)

T=

2xpjVjI I

.- 12
mVj --

11

- mV E

From (3.10)

2_pjVj 12

12

T = mlVth-

11

(3.16)

Finally, we may obtain the momentum flux coefficient Cu S/Aj from
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-- , and -- (i.e. _.I2/I I) are shown for th_ three individual configu-

I 1 Vth

rations in Figure 3.B, as a function of jet pressure ratio. It will be

noticed that \ and VE/Vth are much lower For the modified 3-;nch jet than

for the clean pipes. This is because of the extra pressure drop caused

by the flow shaper in the former case.

(3.17)

3.4 Jet Mass and Momentum Flux Coefficients at Forward Speed

Figure 3.9 shows the nominal true velocity ratio, RNO M, as a

function of jet pressure ratio, for typical runs at forward speed.

Decreased pressure ratios, for 3-inch jet cases at RNO M - 8, reflect the

fact that these tests were run at a lower mainstream speed than the others.

In the case of the modified 3-inch and the l-inch jets, RNO M was

found to be a very close approximation to the effective true velocity ratio

VE/U c. This was also true for the clean 3-inch jet, up to RNO M" 4, but

thereafter VE/U c increased faster than RNOM, to 8.25 at RNOM " 8.O.

Differences between jets were noticeable for both the flow coefficient

CQ (Figure 3.10) and the momentum flux coefficient C_ (Figure 3.11) when
plotted as functions of the true velocity ratio RNOM. However, these are

the true test values applicable to RNOM values used in comparisons of jet

trajectory and vortex strength information.

It has been found :hat the spread between large- and small-jet curves

in Figures 3.10 and 3.11 is due predominantly to the fact that the large

jets ran 10 ° - 15 ° F cooler. The effects on density ratio are shown in Figure

12. If RNOM and RNOM-squared are weighted by the density ratio, as in

Figures 3.!3 and 3.14, a much improved correlation is obtained between the
modified 3-inch and the l-inch jets. The differences which remain reflect

firstly the fact that there are some slight inconsistencies amongst the

interim jet calibrations used for the various pipes during test runs.

Secondly, C_, in particular, should not correlate on an RNOM-squared basis

for differing profile shapes: the distinctions between average, RMS, and

jet transport velocities become involved.



It may have been noticed that the calibrations and analyses described

above were made with especial care. Thls was necessary to insure that com-

parisons between large and small jets will truly reflect tunnel effects
rather than differences between the jets themselves.

3.5 Wall Pressure and Jet Traverse Measurements

Five sets of pressure orifices were installed, as indicated in

Figure 3.15, in rows which extended for most of the test section length.

Symmetry checks were possible using rows 3 and 5. However it was not

possible at the time of the test to install orifices on the right hand

wall, because it was all-glass.

Figure 3.1 shows the rake of seven pitch-yaw, five-holed pressure

probes used for jet flow traverses. This rake was mounted with the probes
horizontal and the rake axis vertical for all tests. This limited in-jet

traverses to locations no less than 6-diameters aft of the jet axis for

the velocity ratios of interest. Other traverses, just aft of the jet

(Figure 3.2), were restricted to a small region centered in the plane of the

jet exlt.

The traverse measurements fell into two distinct sets. The in-plur

measurements at X = 6D were for the determination of vortex strength and

location in the plume. The remaining measurements, in the jet exlt plane at

X = D and 6D were for use in matching jet velocities during plume modeling.

The two X-loca_ions may be regarded as representing "wing" and "tail"

locations.

Data were recorded and reduced using standard techniques, though

second-stage analyses-involving stream function and circulation calculations -

were fairly elaborate. These will be described more fully in Section 4.



4.0 TEST RESULTS

4.1 Similitude Between I- and 3-inch Jets

Figure 4.1 shows typical velocity profiles, measured during static cali-
bration, for the unmodified and the modified 3-inch jets. For the 3-inch,

unmodified configuration, the core flow profile was tilted. The axis of the

tilt could be changed by biasing the supply (Figure 3.6) but it could not be
eliminated. Nonetheless, the velocity in the central core was uniform to

within about t2% and the difference between the clean and matched profiles
was sufficient to be useful for investigations into the effects of profile

shape.

Figure 4.2 gives a comparison between the modified 3-inch jet profile

and the l" pipe profile to which it was matched. It is evider_t that a good

match was obtained.

The cylinder diameters and forward speeds used were such that the Reynolds

numbers for both ripes lay in the high-CD, pre-transitional range. However,

the possibility ,,_asrecognized that finite length effects might reduce the

drag coefficienc of the 3-inch pipe (see Prandtl and Tietjens - Applied Hydro

and Aeromechanics, p 97). So checks were made on cylinder b;Jse pressures.

Figure 4.3 shows the base pressure distributions dow,1 each pipe for

three typical velocity ratios. Good matches are achieved between the l-inch

jet and the with-BLC, 3-inch jet data. The base pressures attain the two
dimensional value about 5- to 7-diameters below the jet exit. The reason for

the shift in the no-BLC, 3-inch jet cases is not understood. However, the

magnitude of the shift is not enough for it to be of great concern.

It appears that end-effects, on the 3-inch cylinder, do not cause serious

flow changes, relative to the 1-inch data. Cylinder-induced effects upon the

jet development should therefore be the same in both cases.

4.2 Traverse Results: Flow Distributions

Measurements were made on a sample basis in the longitudinal and hori-

zontal planes and on a comprehensive basis in a transverse plane at x-6D.

The longitudinal and vertical runs were to explore the general nature of the
flow. The transverse traverses provided vortex location and strength inform-

ation for flow modeling purposes: the traverse boundaries were selected

accordingly. Downwash data. in the iet exit plane, intended for use in modeling,

will be summarized below.

An initial series of traverses, not mentioned previous|y, were made in

the longitudinal center plane of the jet using a laser velocimeter. Anomalies
found in these data, which were traced subsequently to a loose mirror in the

LV system, made retesting necessary using the pressure probe system described

above. The change restricted quite severely the choice of practical traverses.
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Thoughthe LVdata were useless as 'hard' data, for finding cross-flow

vorticity distributions, etc., they did give general guidance concerning jet-

trajectory in side view.

Figure 4.4 shows velocity vectors for the l-lnch jet at RNOM =3. k good

impression of the flow structure is obtained, both in the jet bending region

and behind the cylinder. The flow vectors aft of the cylinder suggest clearly
that the increase in cylinder base suction towards the jet exit (Figure 4.3),

is associated with jet-induced vertical flow. It is noted that Figure 4.4

shows only the upper four diameters of the l-inch cylinder.

Total velocity contour plots corresponding to Figure 4.4 were compared

with published total pressure data at the same velocity ratio for a jet

emergent from a flat plate. The comparisons made, at several RNO H values for

the l-inch jet, indicated that the trajectory shapes were similar and suggested

that the form of the trajectory equations developed for jets-from-surfaces

should be applicable to the present data.

Ho_zc_taZ plane (Z = O)

Axial velocity distributions near the sides of the cylinder (Figure

4.5(a)) show the expected, doublet-like character. The wake region fills

end spreads quite rapld)y opposite to the jet, which induces a strong down-

wash component there (Figure 4.5(b)). The downwash reaches a maximum about

three diameters aft of the jet. The zero downwash contour at X16-inches lies

just to the outside of the plan-view of the vortex trajectory (see below).

Figure 4.6(a) shows downwash at four locations in {he jet exit plane

as a function of RNO M. The upper plots are for a location one diameter aft

of the jet, representing the near field; the lower plots are at 6 diameters
aft of the jet. The span locations were chosen so that comparable data were
available for both I- and 3-inch jets. Downwash values quoted are means of

left- and right-side data in all cases.

On a simplified basis of classical angle-of-attack correction theory,

about one degree of downwash reduction should be experienced by the 3-inch

jet at RNOM = 3. At higher jet velocities three dimensional and impingement
effects make such estimates inappropriate. Though Figure 4.6(a) exhibits

significant data scatter, it is apparent thaC the anticipated downwash re-
duction for the 3-inch jet is absent. In three of the four plots the 3-inch

jet experiences more downwash, not less, than the I-inch jet.

Figure 4.6(b) shows simil3r data for the inclined and vertical 1-inch

jets. The differences between jets are more marked, probably because of

changes in vortex spacing (see below).

2rans_erse pZ-_ne (X - 6D)

The main 'production' measurements were made in transverse planes six

diameters aft of the center of the jet exit for five configurations (I"

vertical, two 3" vertical and two I" inclined jets) at five velocity ratios

(R - 2,3,4,6 and B). The primary flow measurements were total pressure, static

pressure, axial velocity, vertical velocity and lateral velocity. Axial

vorticity distributions (the curl of the transverse velocity field) and source

strength distributions (the divergence) were derived. Streamlines were
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calculated from the axial vorticity distributions: this was a more con-

venient procedure and gave more intelligible results than working directly

with measured cross-flow velocity data.

First-stage 'production' plots for the twenty-five configuration/velocity

ratio combinations comprised: total pressure, vertical velocity and lateral

vt_oclty contours, cross-flow velocity vectors, vorticity and source strenqth
contours.

Only the more useful plots, of total pressure, v_rtlcal velocity, lateral

velocity and streamlines are presented in this report. These are consolidated
to show the effects of jet inclination in Appendix A and to show the effects

of profile shape and jet size in Appendix B. Summary data, taken from these
plots, will be presented in subsection 4.3.

Figure 4.7 repeats selected data from Appendix B and shows the effect
of jet size upon cross-flow streamline patterns as RNOM is increased. The

effects of profile shape were found to be secondary. Length scales in

Figure 4.7 are measured in diameters. The tunnel roof location, indicated
by the 'hatched' regions, consequently appears closer to the jet exit for

the 3-inch jet cases. Negative stream function contours arc denoted by broken
lines and the contour values are listed to the left of each plot, starting

with the innermost negative contour. The int:g,_rs to the upper left of each
plot are run numbers. (Test MTF68).

At R=2 and 3 (Figure 4.7(a) and (b)) the vortex penetration into the

flow has apparently not been affected by the proximity of the tunnel roof

to the plume for the 3-1nch jet though there is somewhat less vertical elong-
ation of the vortex streamlines. At R= 4 (Figure 4.7(c)), both a reduction

in vortex penetration and a marked flattening of the st.'eamlines is evident
for the 3-inch jet. Another indication of roof-induced interference is the

reduced magnitudes of the stream function values at the vortex centers - a
consecuence of a reduction in vertical velocity between them.

In the R = 6 and 8 cases(Figures 4.7(d) and (e)) the 3" jet impinges

strongly upon the tunnel roof and the flattening and the other effects noted
above are very pronounced At R=8 there was significant flow unsteadiness

not only for the 3-inch but also for the l-inch jet. Application of tangential

blowing of *he roof reduced the unsteadiness, though a tendency for the 3-inch

j_t to bend sideways may still be seen.

The data of Figure 4.7, taken with data in Appendixes A and B and else-

where, indicate that the structures of the 1-inch and modified 3-inch jets
are qualitatively similar at low values of jet-to-mainstream velocity ratio.

It may also be inferred from experience with the 3-inch pipe, that streamlines
for the I-inch pipe at R=3 are sufficiently far from the tJnnel roof. as in

Figure 4.7(e), so that tunnel-induced local distortion may be assumed to be

negligible.

4.3 Traverse Results: Data Summary

Having calculated the streamline patterns, vortex centers, defined as
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maximum- or minimum-_ points, may be found quite _eadily. Figure 4.8(a)

shows that vortex penetration into the flow, for the l-inch jet, is very

nearly proportional to RNOM. Comparison with Weston's data (Ref. 4) shows

less penetration for his data, which are for a jet emergenZ from a plane:

this seems reasonable. However, it is pointed out that there are d(fference_

hetween the present analysis and Weston's in the definition of vortex center.

The two sets of 3-1nch jet data differ only slightly from each other,

ma;nly in vortex span, confirming the insensitivity to profile shape,

mentioned earlier. The jet penetratio_ curve for the 3-inch jets diverges

from the I-inch data at about RNO M= 3 as the tunnel roof causes increased jet

turning. It appears that the 3-inch cL_rve wil; asymptote to about 0.7D below

the roof at high jet velocity ratios.

Figure 4.8(b) shows that for_.ard inclination of the 1-inch jet causes

increased spreading of the vortex pair t but redJced penetration into the flow.

It will be seen later that the increased spreading is accompanied by reduced

strength, relative to the vertical jet, at high RNO M. At RNOM= 2, 3 and 4

v_rtex penetration for aft-inclined and vertical jets is almost the same.

Thereafter the aft-lnclined and forward-incllned jet data are the more similar.

Vortex spreading is less for the aft-inclined jet than for the others.

After considering a number of alternatives, a method of determining

vortex strength was selected based upon line integrals of velocity around the

streaml ne patterns derived from crossflow vorticitv data. This is consistent

with the vortex Center determination procedure, just described, and also per-

mits an economical description of diffuse vortex cores. B'/ plotting vortex

strength as a function of the stream function (Figure 4.9) a family of similar

curves is obtained with RNO M as a parameter. Intercepts on the horizontal

axis are vortex center locations, in terms of _. The ,naximum circulation

Strength is usually associated with the zero or a nearby streamline and is of

prime interest in the present work because tunnel effects relate to the far-

field. Central streamlines sometimes intersect the traverse boundary, which

is used to co_plete the integration circuit in such cases. This provides

the opportunity to calculate both clockwise and anticlockwise circuits for

the same central streamline and can give riGe to the overlap region (both

open and filled points at given _) which is evident in Figure 4._ at RNO M _ 6.

The occurrence of such a discrepancy is an indication of net circulation

around the outer boundary of the traverse. Both ?max points will be shown

subsequently.

Figure 4.10 shows maximum values of vortex strength obtained from Figure

_.9 and other, similar plots. It should be noted that the data represent

the axlal Component of the vortex strength, not the total. Despite differinq

exit conditions and differing methods for finding vortex strength, it is

found that the present results ar_ quite s;milar to corresponding data,

derived from Ref. 4, for jet-from-surface cases. Since vortex strength is

greater in the present case, andspacing is less, their product - which is

proportional to llft - tends to correlate better. Two apparently 'bad'

points, at R = 8 in Fig_re 4 lO(a), were derived from a 7 . curve which

haJ an inverted peak, unlike any otker data. Th;s probably reflects an out-

of-range condition for the pitcn probe, so these points have been ignored.
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The 3-inch jet circulations in Figure 4.10(a) agree well with the l-inch

data at RNO M=2 but are somewhat lower at RNO M= 3 and 4. As impingement
intensifies, a circulation plateau is reached at about 2.5 U=D.

Complementary behavior between vortex strength and span is again ob-

served for inclined jet cases (Figures 4.10(b) and 4.8(b)). After behaving

similarly to the vertical jet at R=2, 3 and 4, vortices in the swept-forward

jet display Tncreased span but decreased strength. Conversely, vortices in

the swept-aft jet plume are less widely spaced but stronger than for the

vertical jet.

Vortex-lift correlation

The vertical component of jet reaction lift is given by

and

L I = pjAjV_ cos_ where 6 is jet inclination to the vertical

LI = 2PjFVjl cos_ = 2_J R2COS_ (4.1)
2Czi

½PU_Aj P®L u®) P=

Vortex-life, from the wake measurements, is given by

L2 = p=U_Tmax_Y

and

L2 2p=U=?max 3Y 4 ?max _Y

2Cz2 --= =_- _ U®D D
½PU_Aj P=U_ 02 2. (4.2)

It is evident from Figure 4.11 that, for the 1-inch vertical jet,

Cz, = Cz_ to a reasonable approximation, i.e. all of the jet reaction lift

is represented by the vortex pair. For the inclined jets Cz2 > Cz_. The
implication nay be that the vortex pair represents total jet thrus{ rather

than the lift component. Remova] of the cos$ factor fr_n Czl improves the
correlation in Figure 4.11 but does not collapse the data entirely.

The above result is significant in relation to jet-in-crossflow modeling

because it provides a rationale by which vortex strength may be estimated if

the spacing is known.
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4,4 Tunnel Surface Pressures

k

,-. .,i. ,it. ,,2°

Figure 4.12(a) shows tunnel surface pressures with the 3-1nch jet pipe
installed but with both the blowing air and the ground BLC turned off. The

upper part of the figure is an empty-tunnel-plus pipe case and _hows suction

peaks, corresponding to the maximum cylinder/separatlon bubble diameter,
followed by a pressure rise towards an asymptote proportional to wake dis-

p:_cement thickness. On installing the traverse gear (lower plot) this

pressure recovery is largely lost and further flow acceleratlon occurs

opoosite to the traverse gear location. Fiaure 4.12(b) shows how the previous
distribution is modified when 'ground' BLC is apo, ied. Figure 4.12(c) shows

corresponding data for the vertlcal 1-1nch jet pipe. Here, the effect of

the pipe itself is quite sma11, as expected, and the traverse gear 'signature'

predominates. The effects of sweeping the jet pipe 30-degrees forward or

aft are found to be small.

In subsequent fiqures the appropriate jet-off datum values, depicted in

Figure 4.12, have been removed in most cases, Certain exceptions occur in

strong impinoen_,nt reqlons where greater-than-mainstream total pressures

invalidate the ,_ 1_'_-C-p) superp OsitiOn technique which was used These reaions

are recognized readily since Cp " I at impingement.

This jet in_inges at about RNOM _ 3. py R_:O__ • 4, strona around implnne-

ment is present (Figure 4.12) and there is evidence of a separation vortex
ahead of the X = 0 station in the three no-BLC cases shown. ApDlyinq BLC

(triangles) destroys this vortex and may reduce the impinaement pressure.

Comparisons between sets of octagonal points show good repeatability between
runs and comparison of these points with the 'plus' points sugqests that the

effects of jet profile shape are not very great.

Figure 4.14 shows similar, no-BLC data for various RNOM VALUES. At

RNOM = 6 and 8 the vortex suction peaks _ve forward and becomes stronq. It
is also evident that impingement Cp'S become very high. There was considerable

unsteadiness in the flow at RNOM = _, which caused scatter in the data.

At RNOff = 2, Figure 4.15(a) shows that the wall pressures are blockaoe-
dominated: there is a continuous acceleration along the test section. Super-

imposed upon this, comparison between rails 1 and ] or 5 shows, flrstly, the

anticipated difference signature associated with positive jet llft but then.
downstream of about X = 0.2, a reversal which corresponds to negative iet

lift. This ,_y be due to the fact that jet blockage effects are offset

towards the "ground" (i.e. the tunnel roof_. _omparlson between the upper
and lower plots in Fig, re _.15(a) shows that ground BLC has little effect ,_t

R = 2.
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At RNO M" 4 (Figure 4.15(b)), spreading between rails I, 2 and 3 becomes

more noticeable as llft effects increase. Application of 'ground' BLC {lower

plot) reduces the spread significantly. This may be due to entrainment into

the BLC jet sheet, which will have an ac?eleratlng effect upon the flow 3t

rails 3 and 5.

By RNO M I 6 (Figure 4.15(c)) tunnel flow breakdown ,_ well advanced

and the locus of the characteristic impingement "footprint" and the vortex

ahead of it may be deduced quite readily. Since the vortex ,s undoubtedly

skewed q_ite strongly, the X/B-length scales in the pressure plots may exag-

gerate the vortex size. Rail 3 and 5 data, at RNO M - 6 suggest that sepa-

ration, vortex center and reattachment are at X/B - -0.20, + O.15 and ÷ 0.70

approximately. At mid-sidewall (Rail 2 - triangles) the same features may

be identified, shifted downstream, but only the vortex peak location can be

estimated, at about X/B - I,O (upper plot, Figure 4.15(c)). This was

changed somewhat by 'ground' BLC (lower plot) but otherwise the BLC produced

no great effect. Some differences are observed between right and left sides

(Rails 3 and 5) at the two highest RNO_I values (Figures 4.15(c) and (d)).

This is most likely caused by the jet bending sideways (see also Fiqures

4.7(d) and (e)).

Ei&_e: o? prcE(!c 8;u?¢

ComParisons bet_ec_ corresponding plots in Figure 4.15, which is for

'square' profiles, a;_d Figure 4.16 ('pipe' profiles) show that differences

due to profile shape are almost negligible.

Figures _.17(a) and (b) comprise four pressure plots for RNOM values

of 3, 4 and 6, respectively. Curves for several jet inclination ang'es are

shown on each. The overall magnitude of the signatures are small prior to

impingement but the general trends are the same as those described above.

As might be suspected, the forward-incllned jet (3 - -30-deqrees) produces

greater effects at the walls than the vertical jet and the aft-lnclined jet

produces smaller effects.

Figures _.18 and 4.19 incl0de data for other rails at RNO M - 4 and _,

respectively. In the RNO M _ 4 case the magnitudes of the signature are

starting to become comparable with measurement accuracy and flow unsteadiness

effects. Nonetheless, the anticipated trends are present. The RNO M = 8

cases (Figure 4.19) may involve impingement and both lift and b!ockaqe effects

are starting to become noticeable.

• °
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5.0 THE 'VSD' FLOW MODEL AND IT'S DEVELOPMENT

5•I Introduction

The present aim is to identify or develop a realistic theoretTcal

model of a jet-in-crossf]ow which is suitable for tunnel interference

estimation. The model will be applied with the standard wall pressure siqna-

ture procedures, firstly to extract jet effects from powered-model-signatures

and then to provide jet-related interference velocities for addition later

to those determined for other parts of the test model.

Any flow model used rot these purposes must be reasonably simple: this

eliminates the finite difference and the detailed vortex lattice techniques

used for many near-field studies It was thought at first that an extension

of Heyson's work, probably towards the Fearn, curved trajectory model would

be adequate. However, both were Found to have serious shortcomings and

considerable development work was needed to produce a theoretical model

which was reasonably simole, yet reploduced observed flow features properly.

The new flow model, desiqrated the 'VSD' model (Vortex,Source, Doubletl will

be described in subsection 5.2.

The tsrms of reference for the present work exclude impinqement cases.

However, cases in which the theoretical plume strikes a tunnel surface

cannot just be ignored. ApproF. rlate aeometric changes have therefore been

made, for impinging cases, which parallel Hevsonfs treatment• Though this

approach appears reasonable, detailed studies have not been made of the

impingement region itself or of ways to model it properly. Results obtained

here for impinging cases must therefore be considered speculative.

5•2 Description of the 'VSD' Model

The data found most useful for modeling purposes were measured vortex

strengths and locations - augmented by the 'Fearn' vortex mode] - and tunnel

wall pressures for the 3-inch jet.

As the work progressed, it became apparent that twin vortex models

such as Fearn's contributed only weakly to the wall pressure signatures:

Sources and/or curved lines of axially-directed doublets were needed to

match the observed tunnel blockage effects. As the main body of the jet

penetrates further than the vortices, the source/doublet lines were given

the greater penetration into the flow}as sketched in Figure 5.1 (a) and (b).

On the basis of measured data at X/O - 6 and 2 _ R s 8, the 'Fearn' and the

'Williams and Wood' trajectories respectively were selected for vortex and

source/doublet elements (see Fiqure 5,I(c)),

The line vortex and line source/doublet trajectories are defined for

the 'VSD' model via the equations:

f
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?ID - 0.352 (X/D) 0.429 RI.122

for the vortex pair.

5.1)

and

ZlD - 0.758 (X/D) O.333 RI.000
for the source/doublet pair.

Y/D-O.O76a (X/D) 0.440 RI.OOO

for both vortex and source/doublet

pal rs.

5.2)

(5.3)

Since the Fearn equation for vortex strength agreed well with the
present data. this Is used directly in the 'VSD' model, i.e.

r R-" -O.OX5(X/D)"
U,,,----6"O'6OO(x-7_ (I - e ) (5.4)

The source system is selected so as to model the physics of the

observed wakes. The sy3tem described is the original one, derived as stated:

no adjustments to constants were used to improve the match to the wall

pressure signature.

For elements of the initial part oS the plume, the data show that an

almost parallel-sided wake is required (e.g. Fiqure AI, all R). The total

volume Q12 emanatinq from a line source between point_ 1 and 2 in the

initial plume may be written

QI2 " U_, AY (Z 2 -Z I) C5.5)

where ._,Y is the far-wake displacement width. For the initial plume, a

value AY - D (i.e. Cd - I) appears to be appropriate. For a plume
developing w thout a crossflow, _ntrainment adds to the mass flow in the

jet at about a 23t rate. An improved approximation for AY is therefore

3Y " D ,'_1+0.23 Z/D)

Recogn zing that mixing depends upon path length, S, the flow physics

is better represented by

AY " D ,_I+O.23 S>-D)

Substituting into (5.5) we obtain

f

Q12 _ U_,D (Z 2 - Z I) ,'(I+O.23 SI2/D
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The local source strength, per unit length along the plume, ;s thPn given

bv

QI2 U_O (Z 2- Z I) v'/ I+0.23 SI2/D (5.6)

_S12 _$12

Dou_Ze_ 8trenjrlz

In addition to the sources, a doublet system was introduced in

response to features observed in the wall pressure slgnatures. In this

case, local peaks made it apparent that solid blockage was present, which

requires either a source-sink model or a set of upstream-directed axial
doublets. These are sized to match the jet diameter at exit and grow at
the same rate as for the sink system. The axial doublet strength distribu-

tion is then given by:

" "r , 1+0.23Sl2 D (5.7)

No vertical doublets are required because lift is represented by the vortex

system. In evaluating (5.6) and (5.7) the approximation $12 = X12 is made.

5.3 Tunnel Surface Pressures

The development of the VSD model and the reasons for it's final form

are best illustrated in terms of measured and predicted wall pressures.
The case with the 3-inch jet at R = 2 (i.e. no imoingement) will be used to

demonstrate the matching procedure.

Figure 5.3(a) shows that Fearn's vortex model causes almost negligible
effects a_ the tunnel sidewall (Rails 1 to 2) and represents rail 4 con-

ditions poorly. It may be inferred that the jet lift, and the vortex drag

implied by the Fearn model affect the wall pressures very little. A separate
e_timate was made of vortex drag and used to size axial doublets in a flow

model like Heysons (see Appendix C). The results (Figure 5.3(b)) were

similar to those for the Fearn model.

In view of this failure of established methods to predict wall

pressures, the properties of line sources and line doublets were investiqated
when laid out along a curved jet trajectory, Use of constant-strength

sources or constant strength axially-directed doublets, sized to give far

wake width D and cylinder diameter D, respectively (Equations (5.6 and (5.7)),

gave the triangle and circle results in Figure 5.4. The plus symbols, for

gr3ded sources (Equation 5.6 with SI2/D term removed) reflect reducinQ line
source strength along the plume as needed to maintain constant wake width
far downstream. The latter results are remarkably similar to those for the

doublets•
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Comparison of Figure 5.4 results with experimental data (Fiqure_

5.2 and 5.3) showed clearly that at least sources are needed to complete the

flow model. On the basis of wall pressure comparisons, there is a temptation

at this point to omit the vortex system. However, this would be incorrect

because the associated upwash inteference would be lost.

Figure 5.5 shows measured wall pressures and predictions From a vortex

palr/split line source model, with constant strength sources. The comparisons

are encouraging. However, Figure 5.6 shows that some improvement is possible

by grading the source strengths as indicated earlier, Because o{ their sim-

ilar properties, it is evidently possible either to increase the source

strengths or introduce upstream-directed doublets to improve the correlation.

The latter choice was made on physical grounds.

Figure 5.7 shows that the introduction of doublets, which completes

the VSD model, generally improves the wall pressure correlatlons. Further

fine tuning is obviously possible but was not considered worthwhile on the

basis of one flow case. Comparison of Figure 5.8 with Figure 5.7 shows

that the changes in wall pressures on removing the vortex system from the VSD

model are almost negligible. However, the full VSD model was retained for

the reasons indicated earlier.

Figures 5.9(a) and (b) show wal] pressures for the l-inch jet at R = 2

and R = 4, respectively. As the measured pressures are of very low level

and are a residue which remains after removing the (larger) traverse gear

effects, good comparisons are unlikely. _4ith a single exception, hovever.

the predictions appear qualitatively correct. The exception concerns Rail

4 at R - 4 (Figure 5.9(b). which has obvious problems at lar_:e X/B. Figures

5.10(a) and (bl show VSD and SD results respectively for an impinoement

case: the 3-inch jet at R - 4. Rai]s I and 2 correlate quite well but the

Rail 3 ard 4 results show that the impingement flow is not well represented

by the %5} model.

In converting fl_v velocities generated by the theoretical models to

pressures, it is necessary to use Bernou]li's equation and assume that the

flow next to the wall has mainstream total pressure. This not so in the

jet impingement region, as evidenced by experimental points near X/B - O _or

Rail 4 in Figure 5.10. It is apparent from the experimental curves that a

stagnation pressure of about three times mainstream is present here. It

appears highly likely that the Rail 3 pressures are also directly affected

by impingement total pressure effects, which are not modeled by the present

scheme.

5.4 Interference Velocities

The tunnel interference Flay. at the model centerline, comprises

velocities due to the image system of the model and it's wake as it exist,

in the tunnel and velocities associated with any redirection of the model
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wake caused by tunnel surfaces, The second effect is usually ignored.

Figure 5.11 illustrates this breakdown for an impinging iet-in-cro_sflow.
Generally, in-tunnel measurements, term (i), are corrected by removlnq

image effects, term (ii)_on the assumption that the wake is unchanqed, We
have seen in Section 4 that this is well justified for jets prior to impinge-

ment. However if terms (i) and (ii) are combined For the impinged case

shown, the result obtained is for a 'kinked' plume. Terms (ill) and (iv) may

be introduced to estimate the effects of redirecting the plume so as to

straighten out the kinked region, Though these effects will be evaluated
and discussed below, it is again emphasized that the present work is incom-

plete because no systematlc attempt has been made either to measure or to

model the impingement region itself.

The remainder of this subsection will comprise a description, within

the above framework, of interference predictions first for the l-inch and

then for the 3-inch jet using the VSD flow model, Comparisons will then be

made with similar predictions using other methods.

One-{nch jet (F{jus'e 5.!2)

The R - 2, 4 and, to a large degree the R = 6 cases for the 1-inch

jet are of primary interest in the present work because impingement is not
involved. For this reason, the complications connected with plume impinge-

ment and redirection (see above) do not arise. Though small, the blockage

and angle-of-attack increments at R = 2 and 4 increase with X/B in the
expected way and asymptote appropriately far downstream (Figures 5.12( a_,

(b), and (d)).

At R = 6, non-planar effects become important for this jet. In

particular, flrst-image trailers, which are offset towards the tunnel
model, gives rise to large local anQle-of-attack increments (Figures 5.12(a)

and (b)).

Figure 5.12(c) shows the increments associated with plume red;rectlon,
to be added to the previous, image-lnduced effects. Redirection at R = 6

involves swinging the plume through about 7-degrees about the impingement

point, which is at X - 2.54B. At R - B impingement is at I.OSB and the
angular change is 14-degrees. The effect of redirection is to increase the

local blockage correction somewhat [Figure 5.12(c), upper), because the

trailing vortex pair moves further from the tunnel centerline during

redirection.

The 'bottom line' for angle-of-attack is shown in Figure 5.12(d_. At

low R, the interference is as expected for simple- planar cases. As a the
result of non-planar image effects, _a increases faster than R-squared

rate for planar assumptions.

"hrre-{n,'h j¢t (Figur," 5,13

For this jet, only the R : 2 case is non-implnqing: most of the

previous comments apply in this case. For the remaining, impinging cases,

the previous cautionary remarks apply, The data will be further discussed

because of snme interesting findings concerning the redirection term.

//

/

/

/
/.
/
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In the absence of the along-surface elements (Figure 5.13(a)) the

interference effects are quite insensitive to R. Once impingement occurs

(R - 4, 6 and 8), the VSD model comprise_ a curved cylinder joining the jet

exit to the impingement point, which has ]imited movement over this R-range,

Blockage effects are therefore almost the same at R = 4, _ and R (Figure 5,13(a)

The movement of the angle of attack peak Follows that of the impingement point

as it progresses forward wlth increasing R.

The introduction of along-surface elements (Figure 5.13(b)) and their

subsequent redirection (Figures 5.13(c) and (d)) have major, but opposing,
effects upon the corrections. The two corrections illustrate the importance
of redirection vividly. Figure 5.13(b) shows apparent interference calculated

for a 'kinked-plume' case (Figure 5,11, sketch (i)). Here the plume is held

next to the tunnel surface artiflclally and high anole-of-attack increments

result (compare Figures 5.13(a) and (b)). Since the true plume position is
much further from the tunnel centerline, most of the spurious trailer-lnduced

effect in Figure 5.13(b) is removed when the plume redirection term (Figure

5.13(c)) is applied. As a result, the magnitude of the net interference

(Figure 5.13(d)) is several times less than some of it's constituents. This
is not a reflection of any real effect but rather a demonstration that the

intermediate, along surface model of Figure 5.13(b) (or Figure 5.11, sketch
(ii)) is inappropriate. Methods which fail to pick up the redirection term

must be considered suspect or, at best, incomplete.

(

5.5 Comparisons Between Methods

Comparisons will be made Firstly on the basis of effective source and

doublet distributions (Figure 5.14), then in terms of interference predicted

by the VSD, Heyson and other methods (Figures 5.15 and 5.16) and finally in
relatlon to results calculated directly from wall pressures using the

program From Part I of the present report (Figure 5.17). Further con_ents
on H_yson's method, as interpreted herein, are alven in Appendix C.

To illustrate the nature of the 'VSD' and Heyson flow models, Figure

5.14(a) and (b) expresses doublet effects in terms of equivalent circular
cylinder diameter, plotted with the trajectory in the upper parts of the

figures and expresses source effects in terms of displacement.

For the 'VSD' model (Figure 5.14(a))_the effective cylinder diameter

(upper plot) is essentially that of the jet: the spreading term is weak. In

the lower plot, the full line shows continuously increasing mass flow due
to the (explicit) line sources. The broken llne shows the implied mass flow
due to the point source effects at the joints between doublet lil,es (see

also Appendix C). For the VSD model, this effect is related only to draq.

The total source effect is shown by the chained line. It is evident

that a rapid increase occurs in the first few diameter_ to a level somewhat

exceeding the jet volume flow. Thereafter the rate of increase decllnes as

the jet bends.
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In Figure 5.14(b) a comparableHeysoncase is illustrated for the same
llft and for the sameeffective cylinder diameter. The source effects are

much weaker because only doublet-related sources are present. The drag-

related source effect, in the vicinity of the model is weakened by a sink-

effect at the jet exit caused by the lifting doublet system,

Despite having forced the Heyson model to match the VSD cylinder

diameter, it is evident that it suffers from serious shortcomings regarding

source effects and their distribution.

Figures 5.14 and 5.15 show blockage and angle-of-attack interference

increments respectively for the 3-inch jet at various values of R. The

'Fearn'-vortex model and the 'SD' source-doublet model combine to form the

'VSD' model. Comparison is also made with results from the present inter-

pretation of Heyson's method.

Figure 5.15(a) shows u-component blockage interference, due to the

tunnel image sets, for several theoretical jet-in-crossflow models, At

R _ 2 and R - 4. the interference predicted by the present method is an

order of magnitude greater than that of Heyson. This reflects the fact that,

be:ng largely drag-ba_ed for blockage the Heyson results have strong R-

dependence. The S0 and VSD present results, on the other hand, depend

heavily upon measured wall pressures which have much less R dependence. The

R = 2 and R _ h results are not affected qreatly by the redirection term so

the results shown in Figures 5.15(a) and (b) are almost the same.

In Figure 5.15(b) it is evident that the vortex 'cross' effects upon

blockage become more significant as R increases. With no redirection
term (Fiqure 5.15(a)) this effect is very strong, but spurious. However,

the Figure 5.15(a) result at hlah-R shows how important it is to include

the redirection term for vortex models.

The _ = h case in Figure 5,16(a) or (b) characterizes tne various

methods quite well. Thouqh the SD model has no vertical doublets, the

angle-of-attack curve is very similar in form and magnitude to that of
Hevson, except that the SD impingement point is located (more correctly)

further forward.

As a result of vortex inclination near the jet exit and in the early

plume, the vortex contribution (i.e, the Fearn result) is shifted aft at
medium R-values. This causes an angle-of-attack plateau to occur where

negative d_a/dx for the SD model and positive d_a/dx for the vortex models

are about equal. This local detail Is undoubtedly very sensitive to modeling

assumptions and should not be taken too serlously.

As R increases, the _,ortex contribution (Fearn) to angle-of-attack

dominates increasingly, pa tlcularly prior to redirection (Figure 5.16(a_.
It is interestinq to note that the maanitudes of the image-effect correction_

are comparable with corrections calcuiated on a simple. _(S/C)C L basis.
The fact that redirection reduces the angle-of-attach correction by a factor
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of three or four (Figures 5.16(a) and (b), lower parts) may explain the

preference of some V/STOL experimentalists not to apply (image-based)

tunnel corrections.

Diree= use of wall pressures and the Part I method

It is obviously possible to ignore the non-planar aspects of the jet-

in-crossflow problem and use the Part I program directly to obtain a rough

estimate of interference. If the jet is small enough or if R is low enough

this sho,,ld produce acceptable results. Figure 5.17(a) confirms this for
one-inch jet tests at low R values. The blockage level is low (about 0.6_

at most) and wa|l pressure signals are subject to scatter. Nonetheless the

'VSD' model predictions (crosses) are in quite good agreement with th,_
results from the matrix method of Part I. This agreement also confirms that

the 'VSD' method operates properly as planar conditions are approached.

Figure 5.17(b) shows the corresponding results for the three-i_ch jet.
Here, the blockage is an order of magnitude greater. These comparisons are

particularly interesting because, though the previous conl_ents lar}ely apply
at R =2, by R=4 the non-planar effects have become significant. The full,
'VSD' treatment gives a blockage curve which levels out as the je= bends

(crosses). However, for the early part of the characteristic, _here the

jet penetration is incomplete, the results from the planar and non-p]anar

predictions are in remarkable agreement.

It is tempting to conclude that, if impingement is absent, direct use

of the Part I method will produce good interference estimates. This is

probably true for blockage at the model position, though not a_t of this.
However, serious problems can be anticipated in estimating ancle-of-attack

interference on the basis of the Part I method if used with alp influence

matrix for center-tunnel elements. Runs paralleling those for Figure 5.17
confirmed that the latter procedure yields entlrely spurious angle-of-

attack estimates. This occurs because (as seen previously) ":rue jet lift

effects are almost "invisible" at the tunnel wall. The Part I method
would respond predominantly to the "cross" effects of offset blockage and

return corr_spond;ng, spurious angle-of-attack predictions.
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6.0 CONCLUSIOqS

6.1 Scope of the Present Work

The aim of the work described, to adapt or develop a jet-in-crossflow

model for estimating wind tunnel interference, has been met successfully.

A study of measured and predicted wind tunnel surface pressure signatures

shows that the two most likely existing candidates - the models of Fearn and

of Heyson - fall seriously short of representing the flow physics properly

for the present application. A new, vortex-source-doublet (VSD) model was

therefore developed with significantly improved flow physics. This incorporates:

a curved, varying-strength vortex palr based upon the

'Fearn' near-field jet-in-crossflow model.

a pair of curved, varylng-strength source-doublet lines

extending beyond the vortex pair but with the same hori-

zontal development.

o source-doublet strengths based upon viscous wake measurements;

jet cylinder diameter_and jet growth considerations,

The 'VSD' flow model is employed in a pre-processor program which

removes jet effects from whole-model wall pressure signatures and provides

jet-induced tunnel interference data. The revised wall pressure signatures
and the interference data become input to the subsequent "rest-of-model"

interference calculation described in Part I of this report.

The above development was backed experimentally (see 6.2, below) and

by a number of theoretical studies (see 6.3, below). It is not easy to val-

idate methods such as the present one: 6.4, below, deals with this topic.

Subsection 6.5 considers the special topic of impingement cases.

6.2 Experimental Studies

Though a great volume of jet-from-surface data exists, its relevence

to the tunnel interference problem was in doubt: a jet-from-cylinder repre-

sents a typical V/STOL configuration better. Experiments were therefore

carried out on jets emergent from chimney-like cylinders mounted on the

tunnel floor. The jets, o _ I- and 3-1nch diameter, emerged from 15-inch

high cylinders mounted in the Lockheed-Georgla 30- by43-inch wind tunnel.

Three component velocity measurements were made in the planes X - 6D

and Z - 0 over a range of jet velocity ratios, z s R S 8. Two jet profile

shapes w_re investigated for the (vertical) 3-1nch jet and three jet angles

were investigated for the l-inch case (30-degrees forward, vertical and 30-

degrees aft). Especial care was taken in calibrating the jets. The experi-

ments lead to the following main conclusions:

o The jet flow measurements at X = 6D showed that jet-from-

cylinder vortex trajectories and strengths, for non-impinqing

cases, were in general agreement with jet-from-surface data.
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Results for square and pipe jet exit velocity profiles, were

essentially indistinguishable at the same C_.

o Comparisons cf I- and 3-inch jet data showed that vortex

penetration (in diameters) into the flow was almost unaltered,

during tests at increasing velocity ratio R, until 'hard'

impingement occurred.

o Careful integrations of the X r 6D cross flow data showed that

the product of trailing vortex axial strength and lateral spacing

closely approximated the jet lift. This demonstration is belleved

to be a 'first'

o The above three facts were helpful when developing the flow model.

Tunnel wall pressure 'signatures' were measured alonq five longitudinal

'rails' for all of the above conditions. The 3-inch jet data prov,ded the

or'mary checks during VSD-model development.

6.3 Theoretical Studies

The ';'$2' and F:_.=v _ode_s

Studies with the completed 'VSD' flow model revealed the following:

o The contribution to the wall pressure signatures of the vcrtex

portion of the VSD model is almost negligible: the lifting

system is essentially 'invisible' to the tunnel walls.

o Angle-of-attack corrections due to the jet-in-crossflc_v must

therefore be estimated entirely on the basis of the jet-ln-cross-
flow theoretical model.

Demonstration runs were made by submitting jet-in-crossflow wall

pressure signatures to the (planar) Part I analysis proqram. These revealed

the following:

At I OW-R for the 1-1nch jet, the VSD and planar programs gave

blockage estimates which agreed well with each other, as should

be expected.

For the 3-inch jet the agreement was good in the vlcinitv of the

jet but, aft of the jet, a continuously rislna blockage correction

for the planar analysis was replaced by asymptotic behavior for

the full. VSD model. The latter is more credible on the basis of

previous experience.

o Predicted angle-of-attack corrections, using the olanar method,

were entirely erroneous. This was because the method interpreted

offset blockage interference in terms of angle-of-attack.

These results of the theoretical studies prove that the pre-proces_or

approach to handling jet-in-crossflow interference is not just e×peditiousj

it is essential. 26



St_dics :_sinj the 'Hegira' mr.[_

Both Heyson's program itself and a new, equivalent program which

extends it for wall pressure calculat ions were implemented. A: a qualitative

level the studies _ere falrly successful. Source-llke properties of l_ne

doublets in Heyson's model were identified and interpreted and some inherent

shortcomings, relative to the present, flow-based model, were uncovered.

Quantltatlvely, the present studies _'_th Heyson's model were unsat_sfvln_,

largely because no balance data were available. The problem was compounded

by dlfficultles in deciding upon ground rules for comparing Force-based and

flow-based methods.

6.4 Va'idation

A direct validation of a jet-ln-crossflow interference model is ,ikely

to be difflcult because of the presence of other components For any practlca!

jet-powered configuration. The VSD model, in contrast to others reviewed,

is supported by the following facts:

o _Jall pressures are matched quite well for the 3-1rich jet.

o For the i-inch jet, wall pressure matchlnq is qualitatively

correct and of the right magnitude: this is the most that can

be expected of the data.

o It follows that far-Field predlctlons b_ the method, and hence

tunnel blockane predictions, are o _ the correct order.

o Oownwash differences, between Z _ 0 data fc_ 1- and _-inch jets.

were too small to be of practical use in validating ang!e°of-att ack

inteference estimates.

o Angle-of-attack _nterference estimates, thereforesrest heavily

upon Fearn's vortex model, which is incorporated in the 'VSD'

model. The Fearn model is supported by extensive te_t data

gathered by the original authors and by more limited experiments

described herein.

o Comparisons with the planar method (see above), sho_ that the

VSD method performs properly as this limit is approached.

6.5 Cases with Jet Impingement

The experimenta I studies includee a significant number of impinged

cases. Here, floor tangential blowing was applied as required to remove

the vortex induced suction peak ahead of impir, qement. The themretical studies

acknowledged impingement but did not ma_e any attempt to modP1 it explicitly

except wlth regard to a jet 'redirection' effect (see belo,v_. The followlnQ

conclusions were reached:
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B'/ simplifying the floor flow, tangential blowing is likely

to have eased the task of modelinq imaingement cases.

The use of a 'kinked' theoretical je_ olume, with line elements

along the tunnel floor, may cause spurious interference effects,

particularly if vortices are used in the flow model.

o The introduction of a theoretic_l 'plume redirection term

(Figure 5.11)0 which restores the p_ume from it's kinked forn co

a free air trajectory, can reduce the apparent interference by

a factor of three or four.

The !ast finding is considered very signlf_cant.

l
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Figure 3.5 Supply plenum and flow conditioning for jet.
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Figure 3.6 Oblique view of jet rig, showing supply d#_ails.
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Figure 3.7 Modification to 3-1rich jet pipe for profile adjustment.
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APPENDIX A

WAKE TRAVERSE DATA FOR ONE-INCH JET

AT -30 °, 0° AND +30 ° TO THE VERTICAL
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APPENDIX B

WAKE TRAVERSE DATA FOR ONE-INCH,

THREE-INCH AND SQUARE-PROFILE JETS
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APPENDIX C

SOME COMMENTS UPON HEYSON'S METHOD

Heyson's model differs from the VSD model not only qeometrically

(see Figures 5.1(a) and CI) but also because it relies entirely upon
double_s. A further significant factor is that, as a result of being force-

based, the form of dependence upon R may differ.

Prope-_es of _ine dodo_ets

Heyson's model involves only llne doublets. However, these can have
source-llke properties which permit for example, a non-zero, wake-blockage-

like asymptote far downstream. The simplest example of this concerns the drag-
related line doublet which streams along the tunnel wall from the impinge-

ment point. The upstream-directed doublet vector aligned with this line
element becomes in effect, a long thin ring-vortex tube whlch pumps fluid

along it's center in the upstream direction. It may be shown mathematically
that the induced flow Field is identical to that for a source situated at

the upstream end plus a sink far downstream. The volume flow Q, ft3/sec is

numerically equal to the line doublet strength u ft4/sec/ft. The inclined

doublet llne from the jet exit may be regarded similarlv, givin a a source at

the upstream end and an equal sink at the impingement point each with a

strength proportional to the doublet strength component parallel to the
line between them. However, these contributions create the equivalent of

positive solid blockage (rather than wake blockage) since the net source

strength within the test section is zero. A vertical doublet component,

corresponding to lift, has no wake-like contribution, it has a negative

solid blockage effect when considered as above.

The behavior for angle-of-attack interference is the converse nf that

just described: llft-related doublets generate a positive _,w asymptote
downstream and drag-related doublets give an antisymmetric Pattern of

u[wash and downwash.

Though the individual elements have the properties just mentioned; i.e.

appropriate asymptotic behavior and the ability to provide 'peaky' behavior
near the model, the geometric restrictions of Heyson's model are quite

severe - particularly with regard to the limited ranqe of jet skew angle,
which is found in practical cases. (For 2 £ R • 8, 58,3 ° _ ,, _ 48.6 ° where

is from the vertical.

Pe_er_enc:_ utah jet-_,eZoo_t:_ ratio, R

The form adopted by Hevson is a qeneralization of the Familiar _x= _.

6a _ S, S/C • C L equation to include cross effects. Thus

_U

U-'_" 511 fl + _3.1 f3

?,W

--" _ f + '_3 f3u® 13 1 .3

(CI)
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where ,_11 and #33 are the influence factcrs for drao on u and llft on w and
fl a_d f3 are related to drag and lift respectively_ These take the form of
the product of model-to-tunnel area ratio and a characteristic velocity, Thus

AM U° AM W° (C2)

fl .... C U_ and f3 = "C- " U_'-'T

Uo and Wo are defined via

D - -pA M VR Uo and L - - cA M VR W o

where the product PA M VR represents the jet mass flow in the present case.

D = - m Uo and L = - m Wo

givlngU ° - - D/m and WO = - L/m

If A M is taken here aR jet exit area, then V R - Vj and AM - _/.Vj

Substituting into Equations {C2) from (C4) and (C3) gi 'es

(_/cVj) -O _/pVj -L

fl " _- = _C _ U_ and f3 C m U_-'

So

(C3)

(C4)

-L (C5)
-D and f3 =

fl = cVjU,._C cVjU_,C

Lift

L is the net lift on the model, which we shall assume equals iet gross

thrust for the present vertical jet. Thus

L = ,,Aj Vj 2

giving from (C5)

-., Aj Vj Aj

f3 = hVj b®C = " -C- R. (C6)

This is the form needed if Heyson's program is used directly. For the

calculation of wall pressures, however, a special version of the present

program is used which reproduces the Heyson model. This requires input of

doublet strength, _3' given by

Aj -_,Aj Vj:
Am = from (C3)

m

_3 2"' wo 2" m

l (c7)
. - T_-Aj vj
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For the most meaningful appllcation of Heyson's method to the present

case it would be preferable to employ balance data, In it's absence, jet

drag will be estimated from the traverse data as X/D = 6, since exper;mental

vortex strengths and core sizes are available, _or a solid-body vortex core,

which is a reasonable approximation to the present case:

. °° (E I)+;," (c8)
D _ l°ge a

where b is the vortex spacing and a is the core radius. It was noted from

experiments described in Section 4.3 that the vortex cores touch, implylng
that b ,, 2a. For this case, the argument of the log in Equation (C8) is

unity _,,d the first term becomes zeroo Thus

_ " (c9)
D ='zj-_

Substituting Equat;on (C9) into Equation (C5)

L
Now 7 = -- =

cbU_

Aj_U="
and T 2 = --"

b 2

I

giving fl = "

f l =STc VjU_C

AjVj 2

obU=

b2VjU=C

Aj Aj

"'F "Z- b-

Aj U_
= _ R ?

R"*

R (c10)

A -Ajm pT' I
and _1 " 2"":" U " 2--=- _ _

o m

-Aj
i m

(_=): 8_

- 1 Aj
==

(4_) ? b 2

AJ 2U®2 R_, ._I

b 2 ¢AjVj

R _ Aj U®
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TheR- cubedpower in Eq._ation(CII) is unexpectedly high• Howe,,er

the dependency is weaker than this (though still greater that R-squared)

because the relationship for b takes the empirical form

(Ct2)
b = (_ ÷ _R) O

where _ " 3 and 8 " 0.3 for the l-inch jet dat at X/D - 6 in Figure 4.8(a).

It is found upon suostltuting (C12) into (ell) that the resulting ,,alues of

_, are far too small: the implied cylinder diameter values are an order of

magnitude less than the jet. The assumption was therefore made that b - D:
this gave a match to the jet diameter for R - 7.38. Because of the cubic

dependency (Equation (C1l)), the effective diameter decreases very rapidly
with R. On making the substitution b - D and clearinq, we obtain

I Aj R ? (C13)
fl " _ T

and _ " _
U D 2

Unless stated otherw:se, Equation (C13) or (C14) was used to determine

doublet strength for the He'¢son examples quoted in the main text of this

report.

Z;:.: jet _k_w an3_c

The sweep-back of the jet doublet line, from the vertical, is related

to the velocity ratio R by the equation

I r_ + tan'l 1
x " T '_. R,}

((.15)
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PROGRAM DOCUMENTATION
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PROGRAM DESCRIPTION

Capa_iZit_es

This program computes the effect of a single jet of an arbitrary

diameter at an arbitrary location with respect to the global, tunnel

coordinates. Using the model described in the main text and using an

imaging technique, the additional jet effects are calculated at the spec-

ified wall points and at the tunnel centerllne.

A limited option is prov;ded via the flag ICAL (see Input Description

below) to study the effects of indlvidual components of the theoretical

_odel, if so desired. An option flag JMOO also lets this program be run

to study the effects of jet only when it is not desired to run the Part I

program for further analysis using the modified wall signatures.

As of now the theoretical jet model is restricted to jets issuing at

90 ° to the mainstream. To consider the effects of jets at other angles,

the input constants as well as the program coding defining the geometry and

strengths of singularities will have to be appropriately modified.

To GL,ain the total interference of a model with a lifting jet, the

Part I_ program must be run first as a pre-processor. This program creates

two mass _torage files via FORTRAN UNITS 10 and 11, which subsequently

become part of the input files for the Part I program, with the same

FORTRAN UNIT-numbers. Additlonally, the Part I program must be "signalled"

to expect the pre-processed jet-effect output, This is done bv assigning

a non-zero value to a varlable JETEFCT, which is the last variable of

Input Card Number-2 in the Part I program.
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ICAL:

JMOD:

Format --- 1615

A calculation index (0 S ICAL _ 4)

0 - No calcLJ1ations are to be perforrr_d.

Print the model geometry and singularity

strengths.

I - Calculate jet effects using vortex pair

singularity only.

2 - Calculate jet effect using source singularity

only

3 " Calculate jet effect using doublet singull, rity

only.

4 - Use all three singularities (Recommended value!

A non-zero value implies that the effects of jet

should be taken out of existing wall pressure

signatures. The wall pressure signatures to be

modified should be available in UNIT - 7. The

modified signatures will be written to UNIT - 10,

and the interference effect due to jet alone will

be written to UNIT - I1.

If JMOD = O, no input ts sought from UNIT - 7. The

wall pressure signatures due to the jet alone are

written to UNIT - 10, and the interference velocities

due to the jet alone are written to UNIT - ll.
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d "

TITL:

B:

H:

AZ

BZ

CZ

AY

BY

6 iA IG,BI_ I
AG

BG

CG

AC k

BCL

COL

Format--- (20A4)

A title with no more than 80 characters.

Format --- (8F10.6)

Tunnel width

Tunnel height in same units as that of B.

Format (810.6)

Non-dimenslonal constants For definition or

Z-coordinate of vortex curve (see Eq. 5.1_

sar_le !nput for recommended values.

Format --- (8F19.6)

Set _

Non-dimensional constants for the der:nition of

Y-coordlnate of vortex curve. (See Eq. 5.3) See

sample input for recommended values.

Format --- (8F10.6)

Non-dimensional constants for the definition of

circulatlon strengths. (See Eq. 5.4) See sample

inout for recommended values.

BCL J CCL I Forn_t ---(8F10.6)

Non'dimensional constants for the definition of

Z-coordlnate of jet centerline. (See Eq. 5.2).

See sample i mput for recommended values.
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NSPV: Number of singularity points in the X-dlrectlon

on the vortex line. (Note: These points will be

connected Ey straight line segments to produce

the required llnhs. The same number of points

are used fo, sources and doublets)

NCAL: Number of calculation points in the X-directlon

for both wall pressures and the centerline inter-

ference velocity points.

NWALL: Number" of rails on tunnel surfaces.

LAYER: Number of image layers to be used. (Recommended

value: 5)

9 I XNGI I XNG2 1 "'" I XNGNsPV I
Format --- (8FI0.6)

XNG.:
l

X-coordinate of i-th singularity point normalized

with respect to tunnel breadth, B

,0I,,,Ix,,I...
XC. :

i

XCNCAL i Format --- (8FI0.6)

X-coordinate of i-th calculation point normalized

with respect to tunnel breadth, B.

11
YWALLI YWALL2 i "'' I YWALLNwALL J

Fcrmat --- (8F10.6)

,YWALL.:
I

Y-coordinate of i-th rail on tunnel surface

normalized with respect to tunnel breadth, B.
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l

12

13

14

15

I ZWALLI

ZWALL.:
i

I,_LoRI,R00FI

ZWA  2i' IZ ALLNwALLI,or ,---(8F,0.6 
Z-coordilJate of i-th rail on tunnel surface norm-

alized with respect to tunnel height, H.

IWAL1 I IWAL2 I Format---(16,5)
I !

IFLOR:

IROOF;

IWALI:

IWAL2:

i ITEST

The rail number for floor signature.

The rail number for roof signature

The rail number for the signature on sidewall I.

The rail number for the signature on sidewall 2.

(Note: These should be compatible with the values

IRUN I IPOINT

defined in Card No. 10 of the input for

Part I program)

Format --- (1615)

ITEST:

IRUN:

IPOINT:

f 101
R:

O:

YJET:

ZJET:

YJET

Test Number

Run Number

Point Number

ZJET ] Format --- (8FIO.6)

Velocity ratio, Vjet/U ®

Jet diameter, normalized with respect to tunnel

height,H.

Y-coordlnate of jet origin normalized with respect

to tunnel breadth, B.

Z-coordinate of jet origin normalized with respect

to the tunnel height, H.
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MassS_oz_ge Be_irem_:t_

In addition to the standard input and output files (UNITS 5 and 6),

the coding also requires that three more mass storage files be pre-assigned

The purpose and forr_t of these data files are asto UNITS 7, I0 and II.

follows:

UNIT-7 Input file. This file should have the measured

wall pressure data for the tests done with the

model and tln_ jet. The format of the data is the

same as the corresponding wall p,'essure data

file used by the PART I program. This file need

not be assigned if the jet alone option is used

(i.e., JMOD = O) in running this program.

UNIT-IO Output file. This file will contain the wall

pressure signatures as modified by the pFesence

of the jet. This will be in the same format as

UNIT-7 and can be used as it is for the auxillary

i,,put file for Part I program. If the option

JMOD - 0 is employed, the file ,_ill contain the

wall pressures due to the jet alone.

UNIT-If Output file. This will contain the interference

velocity at the tunnel centerline due to the jet.

The Part I program will add these values to the

model interference to obtain the total interference

due to the model with jet. This file should be

assigned to UNIT-11 again while running the Part I

program for further analysis.
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The output produced by this program consists of the following

sections: (I) Tunnel geometry and the values of constants used for

defining the model as specified in the input to the program. (2) For

given jet dian_ter and R-value, the complete definition of the model.

(3) The velocities induced by the jet at the pressure rails on tunnel

surface and the new values of wall pressures as modified by the jet.

(4) The interference veiocity due to the jet alone.

A listing of the program, a sample input and output are given below.

The following llst of subroutine_ are the same as in Part-I program and

they have to be additionally !inked with the present program: INFLU,

CRDTES, LNVXGN, LNVXEQ, LNSCGN, LNSCEQ, LNDBGN, LNDBEQ, CPREAD,

167

,/



oo

PROGRAM JETFFFCT

C
C FILC... JETEFFCT.,-OR;I

C
C CaIcualtes effect of • Jet on tunnel wm Is at_d modlf tes the wall

C _ressure slcj_atul_ accor,itngly. Also. determ nes th(- Interference

C velocity components at th(_ tuilnel center l _ne cue t_e jet.

C

C INPUT files :
C UNIT 5 : Flow parameters arid otler key values.

C UNIT_7 : Me.tsured W_I1 pre,._sur'e d_t_.

C OUTPUT F t le._t
C uN'T 6 : Print o, "

C qNll--lg : M._dlf ted W;ill ores:sure det:.

C '.ihiT--ll _ Int(rference v.'lo( it's t}Le to the let

C DIMENSION XPV( 30).YPV(3_).ZPV{ 3g) .XPR{ 3(( ,YPR' )£ ).7PP(3B) .XNG(3B).

! Xps{:,_),YPS(3B).TPS(3g). _C{3t_ . vc 3£), Zf ,:_g),
VMS_]@),_AM{3il).VMU(3£4), U( )gl V( 10' ,VC3E_,CI'(3B, 8),

I UWul3gi,t, Rt (3L_Ii.VWALL(Ip).Z',J._IL.I Ill) ;IYP(.I .II':L(ZJI)

COMMON IIMAC/ B.W.LAVI. R.MINIT.IP.U';

CCMMON /DIRC/ DCXO. PCYO, [,CZO

CCMMON /LOAD/ ALFU,POU,,JOU.CMUU,CLU.C]U.(MU

C

C

Pl = 3.141592G54

IBUL = g

C

C- RE_D_.IN GEOMETRICAL FA_AMETERS FOR THE JE_ MODIL

C

READ (5.51@' ICAL.JMO[,

RC_D (5.52g) TIlL

READ 5.5Bg) P.,H

WRIIE 6.6£'_ ) B,H

WPIIE 6.6rI ) TIlL

RF_D 5.500} AZ,BZ,CZ
_4RI IE 6.612}

w'P I IE G. b_a ) AZ._Z.C_

WRIiE (G,+.14)

wRllE (6,63tt) _.Y,)Y
r_{Ab ( 5,5_J£_ ) All, _G .CG

_R_IE (6.61_)

JPllE (6,63H) AG,I.K.CC

PEA[, ( 5.50F_I ACL,_CL ,CCL

_PIIE (6.b]lli _CL.BCI.,CCL

i.- READ IN CALCUL_TI')N P.t,R_ME_ERS

C
PFA[, (5.51/Z} NSP','.NC&[ ,II_-,\LL .LAYER

PfAI ( 5 , .{i{li_} ( )_IIL. I ), 1 : 1 ,rlt.PV )

laE&{, (_.Sk:_) (kL( I ).I I.N, /,t)

Pi_{, (5.5C)P) _YWALL( l),I =I-r'_ALL)

JTFFCT BL _',

,)TFFCT _)_;2

,)Ti F CT tlll0:l

JTFFCT g_.4

JTIFCT _.,,5

JiflCT @,@b

JTIiCT _7

JIFFCT @f8

JTI I CT @i)'i

JTfFCT UIO
JTFFCI _'_li

JTFFCT @12

JTFFC1 B|3
JTf fCT BI4

JTFFCT B]5
,)TF FCT gig

JTF_CF _17

JTF_CT _ld
JTI_ i CT _]]

JTII CT @28
JTF I-CT _121

JTIICT _27

JTF F CT H2J

JT{ FCT i@_4

.)IF t r- f 9 ?5

Jll t(_, 0;'6

j li i.Cl _1:I

2TFIC1 )t-8
,} [I l CT HZ9

JTF_CT i_i)

JTFfCT i'S/

JTF' C _ k),;>
JTf F rT il ._

JTt_('T ll.4
JTItCT _5

,lr[ t CT IJ,t_

JTItC: t!T "_
JFFFCF _3B

JTI fcl _9
JT' ' CT /_41.

JFI_CT _I

JTIICT @_.:

JTIICT _44
Jll't CT t_45

•]Tk : CT _46

JTf I C1 f)4 ;'
,) rt I Cl" tli:t

,tEl FCT i149
,ill ) cr t,5.ii

,Ill ICI H':i

Oil i C r _{ ,'
.)IF I CT l! #

)It It l I,: I

OO

"D_3
C; :';

:TJ r -

_' f:'l
i'-" F,,

-<c,:



READ (S,5gg) (TWALL(1), I°I-NWALL)

REA6, (b.51g) IFLOR,I ROOF._'t'_LI ,I"V_'L2_

N_'XLL = N'JALL +I

YC(N_4ALL ) = O.

ZC_N\,aALL ) = g.

DC I0 I = |,N'3PV

lg XNC(l) = ,,(NG( i i"B

D'C 11 I = 1 ,N"AL

II XC(I) = ',,C( I)'B
OZ IZ I '= I ,NWAL L
Y',,'&LI' I ) = YWAI L( I )'B

Z_,4LL( ) = ZWALLt I )"H

lZ CLNI INUE

READ_IN TEST PARAHETEPS

22 READ (5,51g. END =99) ITtTST'IRUN'IPOINT
_to, t, (b,5;.l@) R,D.Y.]FI'.ZJET
IFI.)MOD .NE. ,,l} C.aLL CPREA'D (ITEST,I RJN.:POINT, CP, I,,CAL)

DEFINE VORTEX CURVE . SOUFCE/DOUBL.ET..LINIT AND CIRCULI FION STRENGTHS

II ( [AYE

VFV( I

7FV( I

×P_. i I

YP_ ( I

ZPP ( |

xP%( l

yp]i I

ZFStl

35 O(; 4_

D = D*H

YOET = YJET'B

Z'11 r = ?JEI'll

I'_EL T = NS P V'." !

CEIL I g " 5"H

.Eli. g) CEIL - IY.IE+33

= O.2b'O ÷ YJET
= IJET

= O.B

= XPV( I )

. yp',,'t ' )

= ZPV( I I

= _F\',I I )

= YPV( ! )

= -PV( l )

2, N';PV

:,,, = XNG(1)/D

)..PVi I = XNG! I )

YF'VI I = Ay-I.(X--By)/P.ZT"n"R + YOET

ZPV(I , AZ,,(Xx-"Czi"L.'_R"'BZ' + ZJET

XPPt I • "(PV( _. )
','p/.( I = ,'PV( : i

,"F'K ( I = "TEIL

XP 3( I = XPV< I )

YF_( I = ypv( I )
ZPLt I = ACI ,'XX"'CCL}'D"'P''BCL) + Z]E"

(,,'.:I/ = p_/)w).L,'(I.Ij-EXP(-CC')_("×X)) '1 B,*TANHIX'<)

C,fH( I ) : b.AA'IA'['._'U*R'RIGI'_"

II ' I .CT. ISECT) CO TCi 4_l

ZPi,Á I _ = ZPV( i )
Ik (ZPV(1) .IT. CE_L) CO TO) IB

JTFFCT g .r"5

JTFrCT O>d
,)T+ ICT g"-7

JTF'CT El "- t"

OTFI CT _5<I

,,1TF F E T OGI,)
JTFICT _161

JTFI CT i162

JTIICT _62

,)T! I CT _64

JTF_C[ E)E5
,)TF r,] r l_lG ¢_

JTIICT g&l

JTEI. CT (_C,8

JTJ I CT 0(','.'

OIFICT _71_

JTFICT m-)Tl

JT[ICT _12

JTFFCT z_ 7 ."_

JTF F CT g74

JTFFLT _75

JFI. I L r ,)IL,
JT_ I CT I)77

JTI'CT OIB

JTFICT 9m/9

JIFIC1 PJI_O

JTFFCT %LI

JTt FCT BB2

JTFFCT _)3J

JIFICT t:d4

OfF [C1 _185

JTr I CT gsG

JTI ! C T g_7

JFFICT gSP

,;TF I_ I T :;t;9
,ITffCT _9_

Jlt_CT It: 1

JTkFCT _c'2

,IFtlCT _.>.1

JT| t CT H')4

,)l[ i.L;T d]- r-

JTf rrl L'36

JIF {'CT _#2

,)[I_ C1 ;club

JTF + CT i_":'_,

Jill CT l.;ll

JTFFLI l?t

JTI I YT I.L_'

,ITi t "T tW-x3
,1Ti k (TT l@.l

,)II l CT Ig5

,IF _ I t" r l,'_b

jTFIC _' l,d"

JII+CI Ik3

JTI:CF IC'::

C k'i

"r1_

"0 :.'"

0 "-;

::G r

_O "C,
C)c,

l'-p:



"L

_'. C#

.,.<_
c.' (.)

7.' C)

Fgl .LD I ill'

191 i]IIJC

091 I;31 #IC

L'I i _].liC

9ql I]IJIC

L91 i]]JiC

9]I I31JIC

SSl ,L3 J J LC"

_'_1 13Jl](
." I i]_llO

ZSI t] J:I!C

ISl ±3.1 tJ ['
r<,_l IDi#lC

6t'l 13t Ill'

f')ll 1.) ! tJ ["
LII 19 .' Jl_

91'I I;, ! ill"

qlil .' ._,J :11 P

i'_ I L3 f tip

I)I 13_}IC

0)'1 i').t llC

621 L3 _1JIC

5_1 1)4#10
LFI 13JJ!C

"__7.i 13 # ILL"

9EI [3,JJP
P[ I 13 I tIC
E _"7.I 131 #IP

T[I 13JtlP
3El I .'] t tIC

f, Ti 131 Ill'

8;1 134 Jl("

L$1 13:1 tlL"

971 13 i ill"
$71 1.) t J.LC

_I £b-I JIC

£ZI 1'9 J iJ L"
ZZI J.3 ] Jlf'

171 J. 3 I_ll("
OZI IDI]IC

1,11 L)JJIC

_II 19'4LC

Z , i L3 J :11["

9II 131Ji['

_II .I. 3., _11f'
Isll 1"_ _ J.l.L _

_]11 13JJJ('

Z[I l'J_ IIC

I II 13JJJ.t

gIl 13 J .IIC

HIJ.:ICZ'_/,iJC_, 'H,'Q'lt ,'_,I;:9"91 _lll._#"

(,_ll 9' 9 i 3 LI d/5

13(ION-LIP IAO 1Nlvd -3

3

(ll,'([)SJX.I)CZ'_ . B'liiSOS.,!t_lil#_ = (CII'II,A 95

ZXVIIC'Z .= l' C, ,0

Lr.-( J,.5"Jl,,,l,!,..")"Z = ( 111144

• # : I),t_'_i]
"% = OZ _,i

• I- = 0'4 )0

Jfl!l I 111",] 10
1Q/((I/IIPiSdi';+II+C)StXI=SZI't+'I )Ii'IOS,,I,VIS,IZ-( I/C)SdZ)=O = (PI3,1^

( 7.. !Ci%4Z-([+l')'. dl)

÷ {,_,,[(i'_!_d^-(_iCiSdAI + Z,,_(<CiSdX-([+_'I ,l_))li#iFiS : llC

ZXVHC' I = C I5 ..)tl Ills

SHIgN3aLS 13"I']fi00 QNW 338i'iOS 3NIJ]{] -9

3

I-ZXVW[' = Z >/4.

3133 = (Z×V_IP_3dZ

1L-CA + It,.,O,.,.O"S#'(A'I,=._X×I=,V = (ZX'g'kl_'lSdA
Q/JNI× : xx

INIX = iIIiX'VMPISdY
C = (_K_.,,IC 91

JNNI [l,i_ ] S_

91 (sL 03 (INIX ".I_" (C)._d4) J|
ACN' [ • C _I' 9Q

_50i 05 ((ASNiSdX "19" LNI'(IJ[

_ISN ',, Z'('$.'iC
(], _.NIV, - LlllX

l13311$'l}.,+(]3i1.,li.U.13Vill13CZ-'ll];;))i - IN'_

_lO..)U _il_ :INII l_-SqOO/33_lnO._ .40 NOI.L.)]S_I31NI UO_I _13-_"3 "'
3

l-lD3SI ; XVHC (Ib3S! " ]9" XVN:iJl

((I+IiHVD + (llN_t't)_,S'O - ([ il, i;t9 £1r
XVWC'I - l £I' .'cl

,_SN • Xv',_["

l-,_,ISN = ,_;N

3

]i'i=!I J N )] zIll

(17837 - (I)AdZ

(')lid& = (IlPdA

I I ) #dX - ( [ iAdX

_ r91_._l."J,.O"Z•v',:v9 = (I)1_'[,

(..;XIHN"/Ii_B + ({XX-X<.DD-IdX3-B'I),,XXIDV = /l_s5

( [ )Adx - x'x

"113.?. - (I)_-JZ

(, I-I )d]A-, i )lick) I

• (I-I)i:llZ-iI_.IdZil('I-lilld,T-]I39) * (I-li_IdJ _ (I}_ JJ

It I-I )_dX-, I )"In,() I

=i(l-I)t:14Z-(l !oeZ)/(t I-'Iltl¢lZ-"iiJ3i * (I-i ill,IX - ( I )_dk

1 " 13]_1

0

• d



"-4

6C

66

67

C

C

C

3J = OMAV,*l

D". tB J " I .JJ
G_wI;, - GAM( ] ) '_

WRI1E (6,q48_ J. XPV(O)/D,VPV(J)/D,ZP4(J'iD. GAM(J)/[
68 C, _iI !NUE

WHILE (b,621)
)J = JHAXZ-I

B( 62 0 - l.J.)

,YFIT[ (6.646) O, X)S(J)ID,vps(J)/D,ZP](," '/D, VM_(O)#C.'VMU(J)/D/D

62 6CNI INUE

C

IF(ICAL .EQ. 3) GO T022

C

C- DEFINE COMPCNE_tTS OF MODEL

C

WRI1[ (6.622)

llYr(l) - P

IF(ICAL.E'].! .OR. ICAL.EQ.4) ITYP(]'_ - l

C,L rO '£5.6(,G7),I

I_( I]_P(I} .NE. 8) WRITE(6.623}

G( 10 78

ir(llYP(l) .NE. _) WPITE(6.624)

C.,C l 0 7_,

IF,ITVP(1) .NE. _ *,.,'RITEth.625)

/0 CONTINUE

Cr"IFUTE W,ekIL_r_RESSURE AND CENTERLiN[ INTERF[RFNCE

DC 95 NW - I.NV,'ALL

DC 75 ! = I,NCAL

yc( I ) = Y'dAtLrhkJ)

7Ki|) = Z'IALL(hW)

75 C(,NI INU£

'qi NIT =

IF(NW .EO. NW,'tLL) MINII" _, '

WRIIE (6.6)6 _ LAYER,MINI'r

IriMINIT .[F_. if) WRIIF (6.£27) N'J

IF(MIrWIT .;_E. _) _,'RIT[ (_,g_8)

,#_ I l ( (6.329y

l "Y'J = 0 . _:

I7'd = g 8

;,- "_,_ I = I,NCAL

it(l} = B.B
q' I " = 0._

'Jr 1 J = _._

U_.'t ( I ) = _.
tiF'< I I I = _.

C t

D r- l'_ J = I .NSV

D_,I = _.

JTFFCT q5

JTIICT cb

JTIFCI 6_

,)If I CT _-_J

JIf t CT _9

JTt I CT /l'
JTft,,T 71

,)IF< CT 7Z

JFIICT }3
Jlf_(T 74

,) rl f C1 75

JIIICT 76

,)TFICF 77

JT; _ ,'TT 7b

,]TFt ( , 7 t'

JTI ' C :" BO

JTFtCT B!

Jgf F JT _d

JTfFCT _l

)FFFCT t:4

.)T| F,"T $5

JTIFCT vG

JF_kCT E,7
JTFICT E-B

JrlIC T _9

,]ll _ CT 91)

Jr_iCT _1
,)Tt)CT c.7

JIIICT q]

J FF I CT _4

,ITFICT _5

JTFFCT )6

)TF, CT 57

JTFICT TB

JTF_ CT '_,)

,)TF I CT 2_0

JTF {, CT .).¢1

JIF( C1 ?.:Z

.)l, FCT JL'_3

JIFICT 2;'4

)lllC7 2."_

JTttCT 286

JTtICT 2:7

,lfFtfT 2C")

3TF CT {'IC

JI) CT 211

Oil CT 212

)If tit d13

,7 rt C I 2 I .l

,)TI C1 215

•)IF LT 21b

,)rl CT L'l 7

>IF ( ' JIB

-ill CT /19
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L,WOLD - LAYER

Lt- CER =

OC I I J = IsECT, N_V
r.r'LL )NFLJ(XpF_(j),,pR(j),_Fp(,,I), XPR'J*I .YPR J,_I),ZFR(3"I ),

l -C,AMJ.)i.2.1vw. IZ'#- XC_I).'(([)'TC(_ :' I'_;l'O\ i''D"I )

¢_n I . 7'.O'YjET-YP_(J:

yp;," . 2.p.yJ:[l-k'Pk',-"4 l)
CALL INFLU(),Pr(J),Y"RI.ZP=(J). YPPI]+I)'vPR?'TP_C')÷L;'

l
t:' I ; - U,'I ) - DUI - l.it2

V¢ I ) = V( I ) - (VI - UVZ'

Bl E,. llllhU[

Le. VER - LHOLD

B2 CCN T INUE

C
uEFF - U( I )
IF(JM',D .NE ,q) uEFF " SO pT(AIIS(I'-EP(I'tIV)')!"@ - Lr I)

• ,;. -7CP(I NV) - -UEFF-'Z.8*ULFI" ' - V(l ,_"Z - _,/(I "_7,,(1),H
IFiHihlT EO.ili gkllE (G,6_lJ'} I.YCI )13. v( ( I ' I ,

• tli.i,v(l } W(I ) i;F(I,lii'_
t 2.c ! i_11,

IFIMIN'.T NE li WQIIE (6,6.1ill I,XC'I _!#,v({l'/l"
" " U( _ } .Vt I } '_( i )

"IFiNW.[O.IWALI .Oil. NW.EO. TWAL2` t;Vt (li =_ UWL I) + lJ(_)

iFi"W.tO.IkOO:) liRF( [ } = ,IFF( I I + i( I )

IFII, U.EO,IFLORI UI_F(1) = PIP( I i - ti( I I

?I_' CLNI INUE

9 ¢_ CCNI INuE

C
L- './Rile RESULTS TO MASS_S TOIAGE FILES

C CALL JE TINT( ITEST'IRUh':P'I:NT'_" YC. JWL uRF, t.,4.',,/, iICAL)

C,e! L CPVlall(l'_%I.IPHh, IP'iZNTo ( P. I'.C_L _

._C IO 2;:

C

99 5"I9 F

C.

51@ FL;I.iAI (161E,)

C , TUN,It L CEOMF'RY: B=',FS.2 " It'',r6_/)
GOi,_ FC _MAl : 1.4I , -

,.CI fC;l_Xl ( /|X,73A4/ _
,Ill I" +FIAT ( l'I''' jET M,r)OEt "'•'II" "i?E i_N[i LOC/:T]O"I5 :- ,I'_x'IH!''

l 7v.F,H )I,1,",;' .Lt_Y JE e, 8.4Y .6ti;'_6 r'ti .
;12 FE>HAT (/" Col_TJ'il_ FUR. .13;<,.,d(,i.T-X (diVE. 7 f'_ _ t_'X "HA"

I 8_, , L H _,Z , 8. , _H( Z i ' ) HI'," , 8 ;C . _ b[ _' )

6li FC_PIAT l/ SX, "._c'laT _ C'LVRVr" YIX) T?_ •

616 F(;P_^T ( /3)_, " 7C_P It" , I-;LN,-H,.15Y.?I.A],,I,):,Ztti_( .@ ¢,2HFI,)

_.tl; iCr_btjl {/]X " )FC'DE'_T LI',f , 7') ) , i_ li[.C.L , ; , ._,_l_.i t ,TY._,_ICCL )
.],, IL_LIAT (1, " V'3 fall-7 c[(ff4LTl v AND S-F!N;T;_', :'/ :" ,'t''i'#°'""<)''

• ]i ' y '[' " , '_'. "i" Y [i" #-')_• 'l;#%|4' y _ _jl Ifi "/ '

e>2l FC;HAi(//" DE ''ETli_ r, rill %'lENClh% +_,R .... li(/ '<:J:Fvi r. NG C31JE_LET'
i,,7), , , i, ,_;,_ ,, iO, ._,,,i/[" , .X, '';, b" L: .

. " MI( _'UO_ NUi_[I'['Illl)) "";

JTrFCT 275

j ft'l CT Z71

,J'l t CT {)79
,lrflCl ZI_)

JTf _ CT J_
.)lff CI ,){.I

,ill ICT 7_.$

)TfiCT ._S

,)Tf c t. T ;78_
JTI I C f C.k,'

.)TFICT 2,:8

,)TF fCT z' "; u'
,)TF ICT Z:ti_

Jlklt ;"Jl

JIFICT 3_2

,)T! ! CT _3

.,IF I Cr 29b

,)ft I Cl Z't #

,)rllC] 77it

Jl'f i LT ;? '-' _J
,}TIr CT 33J

irl f ( ; ._.:I

Jl'l, C "T 3.2

.lit ) LT ?_3

Jll t Cl J,'4

JTi _ (.T 3..%

,lrFFLT L_7

,) ft I {T J;'ll

,)TI I L T ]J')

JTFICT 3ll)

,)IF) t T 311

JTIICT "iI ,-_

,J rf I {'T J14

JTI. I t.i J_

JTF,CT !_E

,]T i ; L.': 3 _,7

J rl ¢'LT 31,;

)IIFCT 119

,JFFICT 3:',)

,)lll LT ;,__I

,)IF I C T 3 >2

,)TFtC r 3_;,

,)TI _(T :;24
,)fl i f T J ",

.I fl I +.T _. +,

.ITIFLI

JTIIC1 _ I

.)TF t CT I t

i



_2_ FC_MAT( /1, EOMPUTAT|ONAL MODEL I P;CLU)E-_ /' TLE :OLLCW_Nq "

. "_NG LAI _11|I-_':" _

G23 FC_A't (3J.':,'_Ld IF)* P/-IP'

b2% FC"M_'T ('_)_, "'3('"l_LtT<"' )
bL!t FC;_I.b_.T */," II4P,(;F =_y[,q% =',12,'. M-IN.TIAL ='.12)

,'._'_7 _LRI'dAI (* JET LIf_'LT ON P.,',:L -*.]7_
_._8 FCRMAT (" .JET il4 c[-_-FENCI" VELOC!TY Ar !t!;wNEL C[-NTFF LIN[ :'_'

._-_79 FC_IAT (/_','l .G× ,y/_. " "X,'V'B .,'), "Z,tt', 7; ,'itt'J -_1=0', 5X,
,. "D_LV'UO'. 5×.'i)-,W/UO*. 4_, ' ;P HODfD /',

C
_3_ FC_HAT {25X.S-l_.G)
K4d FC : ,4AT ( I _. I,<.3F lB. 4. lX.4;'l 2.4)

C
t'ND

JTFFCT 37_

JTFFCT 331

JrfFCT 3_2

JT_CT 3_J

JTf I'CT 33J

JTF_ET :_3!_

JfftCT 3_,6

JTEICT 3S7
OTF _ CT 338

,Ill _CT 3]9

JT_,C'f 3_
JT_fCl .;4i

.1[_ _CT ._4Z

.)T_ _CT 343

JT[_CT 344

CL -_.

•,< V';
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SUBPObT|NE CPP, EAD(IT[ST,|PL:IX.IPNT. CP, HO)

C

C- R{ADS IN _XPERIHENTAL CP_,'tLUES FPOM JN; _7.

C

CCHMON /LOAD/ ALFI-,PqLI.OnU.CM'IU.CLU,C]U.(TMU

UI dENS|ON CF ('_g,'J_
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